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Abstract In this paper an adaptive observer for a class of uncertain nonlinear systems is proposed. Based on linearly param-
eterized neural networks, Lyapunov argument, and an adaptive bounding technique, the proposed scheme ensures zero observer 
error convergence, asymptotically, even in the presence of approximation error and disturbances, whereas the others error signals 
remain bounded. In addition, the proposed scheme does not rely on any Riccati equation solution and it does not suffer from 
chattering. 
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1    Introduction 

Recently in [1] and [2] it was considered the asymp-
totic observation, based on linearly parameterize neu-
ral networks (LPNNs), of a class of uncertain nonlin-
ear systems in the presence of time-varying unknown 
parameters and non-vanishing disturbances. How-
ever, the proposed methods present several draw-
backs, which restrict the application: 1) observer in 
[1] is based on a decaying-width design, hence it can 
exhibit chattering phenomenon when the width has 
decayed practically to zero, 2) observer in [2] is dis-
continuous, then also exhibit chattering, and it as-
sume that the unknown parameters have absolutely 
integrable derivatives. In addition, observers in [1] 
and [2] rely on a Riccati equation solution to be im-
plemented. 

On the other hand, in Vargas and Hemerly [3], a 
robust modification for the weight adaptive law in 
neuro-identification problems was proposed to en-
sure, in contrast to the literature, that the prediction 
error converges to zero in the presence of approxima-
tion error and disturbances. The adaptive law con-
sisted of a leakage modification of a standard gradi-
ent descent algorithm. However, in contrast to com-
monly leakage modifications [13] which aim at sta-
bility in the presence of approximation errors and 
disturbances, the leakage term was introduced for, in 
addition to stability, ensuring that the state error con-
verges to zero. It was proved by using usual 
Lyapunov arguments and an adaptive bounding tech-
nique [14] that the state error converges asymptoti-
cally to zero, whereas the others error signals remain 
bounded. However, the proposed method relies on 
the complete state measurement. In fact, the main 
contributions of this seminal work were to provide an 
appealing parameterization and weight adaptive laws 
to asymptotical identification. So, asymptotic obser-
vation or tracking were not consider.  

In this paper, motivated by the previous facts, the 
problem of estimating the state of an uncertain sys-
tem is considered. The aim is to relax the application 
assumption in [1] and [2], that is, the Riccati equation 
constraint, whereas the chattering is avoided. Based 
on neural networks, Lyapunov method, an adaptive 
bounding technique, and by using the design method-
ology introduced in [3], an asymptotic adaptive ob-
server is proposed for a more general class of un-
known nonlinear systems that these in [1] and [2]. It 
is proved that the observation error converges asymp-
totically to zero, even in the presence of approxima-
tion errors and disturbances, if some conditions on 
the design parameters are provided. The proposed 
work extends the state of the art in adaptive observer 
design, since it ensures convergence of the observa-
tion error to zero, without chattering and Riccati con-
straint. To the best of our knowledge, a smooth adap-
tive observer which does not suffer from chattering 
and ensures convergence of the estimated state to the 
true has not been established in the literature yet. 
Throughout the paper ( )⋅tr  denotes the trace opera-

tor, ( )⋅minλ  denotes the minimum eigenvalue opera-

tor, ⋅  denotes the 2-norm and 
F

⋅  denotes the Fro-

benius norm. 

2   Linearly parameterized neural networks 

LPNNs can be expressed mathematically as 
 

 ( ) ( )ζπζρ W,Wnn =                       (1) 

 

where ρLr
W

×ℜ∈ , ζζ Lℜ∈ , ρζπ LL
: ℜℜ a  is the 

so-called basis function vector, which can be consid-
ered as a nonlinear vector function whose arguments 
are preprocessed by a scalar function ( )⋅s , and 

ζρ L,L,r  are integers strictly positive. Commonly 



used scalar functions ( )⋅s  include sigmoid, tanh, 

gaussian, Hardy’s, inverse Hardy’s multiquadratic, 
etc [4]. However, here we are only interested in the 
class of LPNNs for which ( )⋅s  is bounded, since in 

this case we have,  
 

( ) 0πζπ ≤                                   (2) 

 
being 0π  a strictly positive constant. 

 The class of LPNNs considered in this work in-
cludes HONN [5], RBF networks [6], wavelet net-
works [7], and also others linearly parameterized 
approximators as Takagi-Sugeno fuzzy systems [8], 
which satisfy the so-called universal approximation 
property: 
 
Property 1 [9]: Given a constant 00 >ε  and a con-

tinuous function r:f ℜaΩ , where ζΩ Lℜ⊂  is a 

compact set, there exists a weight matrix ∗= WW  
such that the output of the neural network architec-
ture (where ρL  may depend on 0ε  and f ) satisfies 

 

 ( ) ( ) 0εζζΩζ ≤− ∗
∈ SWfsup                  (3) 

 
where  ⋅  denotes the absolute value if the argument 

is a scalar. If the argument is a vector function in rℜ  

then ⋅ denotes any norm in rℜ . 

3   Problem formulation 

Consider the class of nonlinear systems 
 

( ) ( )[ ]t,v,u,xhu,xfBAxx ++=& , ( ) 00 xx =  
Cxy =  

(4) 

 
where Xx∈  is the n-dimensional state vector, 

Uu∈  is a m-dimensional admissible input vector, 
qVv ℜ⊂∈  is a vector of time varying uncertain 

variables, Yy∈  is the q-dimensional output vector,  

h are internal or external disturbances, 
rUX:f ℜ× a  and [ ) r,0VUX:h ℜ∞××× a  are 

unknown continuous maps, C,B,A  are known ma-
trices of appropriate dimensions. In order to have a 
well-posed problem, we assume that V,U,X  are 

compact sets, f and h are locally Lipschitzian with 
respect to x in [ )∞××× ,0VUX , such that (4) has a 

unique solution. 
We assume that the following can be established  

 
Assumption 1: On a region [ )∞××× ,0VUX  

( ) 0ht,v,u,xh ≤                             (5) 

where 0h , such that  0hh 00 ≥> , is a known con-

stant. 
 
Assumption 2: The pair A, C is detectable and there 
exists a symmetric positive definite matrix P such 
that 

 

( ) ( ) 0QPLCALCAP T <−=−+−  (6) 

∗= CPBT  (7) 

 

where ∗C  lies in the span of the rows of C.  
 
Remark 1: Assumption 1 is common in approxima-
tion theory. Assumption 2 implies that the linear part 
of the unknown system is dissipative or strictly posi-
tive real [10].  

The aim is to design a NNs-based adaptive ob-
server for (4) to ensure the observation error conver-
gence, that is, the state error convergence to zero, 
asymptotically, which will be accomplished despite 
the presence of approximation error and disturbances. 

4   Neural parameterization and observer error 
equation 

We start by presenting the observer model and the 
definition of the relevant errors associated with the 
problem. 

From (3), by using LPNNs, the nonlinear mapping 

( )u,xf  can be replaced by ( )u,xW π∗  plus an ap-

proximation error term ( )u,xε . More exactly, (4) 

becomes 
 

( ) ( ) ( )t,v,u,xBhu,xBu,xBWAxx +++= ∗ επ&      (8) 

 

where rxLW ℜ∈∗  is an “optimal” or ideal matrix, 
which can be defined as 

 

( ) ( )
















−=
∈
∈∈

∗ u,xŴu,xfsupminarg:W

Uu
,XxŴ

π
Γ

       (9) 

 

with { }
Ŵ

ŴŴ αΓ ≤= , Ŵα  is a strictly positive 

constant, Ŵ  is an estimate of ∗W , and ( )u,xε  is an 

approximation error term, corresponding to ∗W , 
which can be defined as  

 

( ) ( ) ( )u,xWu,xf:u,x πε ∗−=               (10) 

 
The approximation, reconstruction, or modeling 

error ε  is a quantity that arises due to the incapacity 
of LPNNs to match the unknown map ( )u,xf .  



 

Remark 2: It should be noted that ∗W  and ( )u,xε  

might be nounique. However, ( )u,xε   is unique by 

(9). 
The structure (8) suggests an observer of the form  
 

( ) y~Lu,x̂ŴBx̂Ax̂ −+= π&                   (11) 

 

where x̂  is the estimated state, nnL ×ℜ∈  is a posi-
tive definite feedback gain matrix introduced to at-
tenuate the effect of the nonzero uncertainties and the 
initial condition 0x , and yx̂Cy~ −=  is the output 

error. It will be demonstrated that the observer (11) 
used in conjunction with a convenient adjustment law 

for Ŵ , to be proposed in the next section, ensures 
the asymptotic convergence of the state error to zero, 
even in the presence of the approximation error and 
disturbances. 

By defining the state estimation error as 
xx̂:x~ −= , from (8) and (11), we obtain the observer 

error equation 
 

( ) ( ) ( )
( )u,x,x̂B

t,v,u,xBhu,xBu,xW
~

Bx~Lx~

ω
επ

+
−−+−=&

    (12) 

 

where ∗−= WŴ:W
~

 is the error weight and 
( ) ( ) ( )u,xu,x̂u,x,x̂ ππω −=  is a disturbance term. 

 
Fact 1: With the definitions (2) and (9), the ap-
proximation error and disturbance terms are upper 
bounded by  

 

( ) 0u,x εε ≤  

( ) 0u,x,x̂ ωω ≤  

(
1
3
) 

 
where 0ε  and 0ω  are positive constants. 

 
Assumption 3: The upper bounds 00 εε >  and 

00 ωω >  are previously known. 

 
Remark 3: The previous knowledge of upper bounds 
for approximation error and disturbances is common 
in the robust on-line parameter estimation literature. 
For instance, the dead zone algorithm uses a previous 
knowledge of bounds for the approximation errors, as 
can be seen in [11]-[12], or modeling error, as re-
ported in [13]. 

5   Adaptive laws and stability analysis 

This section is concerned with the definition of the 
weight adaptive law to force the observer error to be 

null, asymptotically, whereas, at the same time, the 
others error signals remain bounded. The design 
method is similar to that in [3]. However, the adap-
tive laws are now defined based on the output error. 
In contrast to [3] where it was assumed that the state 
is completely measurable.  

Before presenting the main theorem, we state a 
fact, remark and lemma, which will be used in the 
stability analysis. 
 

Fact 2: Let ρLr
W
~

,Ŵ,W,W
×∗ ℜ∈0  and rrC ×ℜ∈  be 

a diagonal matrix such that CCCT = , where 
( )icdiagC = , 0>ic . Then, with the definition of 

∗−= WŴW
~

, the following equalities are true: 
 

( )[ ]
( ) ( ) 2

0

2

0

2

02

FF

F

T

WWCWŴC

W
~

CWŴCW
~

tr

−−−+

=−

∗
 

[ ] 2

0
2

0

2

02
FFF

T WŴWŴWŴtr −−+=  

(14) 

 
Remark 4: The first equality in (14) leads to the fol-
lowing inequality: 
 

( )[ ]
2

0

2

0

2

02

F
maxiFmini

Fmini
T

WWcWŴc

W
~

cWŴCW
~

tr

−−−+

≥−

∗
         (15) 

 
where ( )imaxi cmaxc =  and ( )imini cminc = . 

 
Lemma 5.1: Let a scalar bounding function be given 
by 

( ) ( ) 






 −






 +−⋅

−=

∗∗∗

∗

ψψψααψψψα

γψ ψ

,ˆlWŴˆ,ˆl

x~Cˆ

FF 1
2

0

2

21 22

&

                           (16) 
where 

( ) ∗
∗

+
=

ψψ
ψψ

ˆ

l
,ˆl 02

                           (17) 

 

and 0210 >∗ψααγψ ,,,l, . Then, subject to the condi-

tion  
 

( ) ∗≥ δψψ 0ˆ                              (18) 

 

where 
01

2
0201

4

4

l

Wl
F

α
αα

δ
+

= , the bounding function  

 
is lower bounded, for all 0≥t , by  
 



( ) ∗≥ δψψ tˆ                          (19) 

 
Proof: Consider the Lyapunov-like function ([13]) 
 

21ψγψ ψψ ˆˆV −=                          (20) 

 
By taking the derivative of (20) along (16) we ob-

tain 
 








 −






 +−⋅

−=

∗

∗

ψααψα

ψψ

lWŴˆl

x~CˆV

FF 1
2

0

2

21 22

&

     (21) 

 
Furthermore, based on (16) and (18) it follows 

that ( ) 0>tψ̂  for all 0≥t . Then, with the definition 

(17), the Lyapunov derivative (21) can lower 
bounded as 

 

[ ]∗∗ −−≥ δψψψαψ ˆx~CˆlV 12&                  (22) 

 

Hence, if ∗≤ δψψ̂  we have 0≥ψV& , which im-

plies that the bounding function is directed towards 
the outside or boundary of the region 

{ }∗≤ δψψψ ˆˆ . Consequently, based on (18), it 

follows that ∗≥ δψψ̂  for all 0≥t . □  
We now state and prove the main theorem of the 

paper. 
 
Theorem 5.1: Consider the class of uncertain nonlin-
ear systems described by (4), which satisfy Assump-
tions 1-3. Let the weight law be given by 
 

( ) ( )[ ]{ }
( )}u,x̂x~C

x~CWCIŴˆCŴ

T

W

π

αψψγ
∗

∗−∗

+

−−−−= 0
1

22
&

 

(23) 
 
where ψ̂  is given by (16), 0>Wγ , I  is an identity 

matrix, and  

PPK T +=                               (24) 
 

Then, subject to the condition (18), and if 
 

01

42

l

KB
F

α
α

ψ =∗                           (25) 

minic≤2α                                (26) 

( ) 00 ≤∗ WWtr T                             (27) 

201 ββ ≤−≤ ∗
F

WW                      (28)  

where 

0004 ωεα ++= h , 
maxiF

cW

l

20

01
1

4

α
αβ = ,  

maxic

l

2
01

2
αβ = , ( ) ∗= CQminλα3  

(29) 

 

The error signals ψ~,W
~

,x~  are uniformly bounded and 

( ) 0=→∞ tx~limt . 

 
Proof: Consider the candidate Lyapunov function  
 

( ) 22 11 ψγψγ ψ
~~W

~
W
~

trx~Px~V W
TT −− ++=        (30) 

 

where ∗−= ψψψ ˆ~ . 

By evaluating (30) along the trajectories of (12), 
(16) and (23), and using the representation 

( ) ππ W
~

Cx~x~CW
~

tr TTTT ∗∗ = , we obtain 

 

( ) ( )[ ] ( )
( )[ ] ( )

x~C~l

x~C~WŴx~Cˆ~l

WW
~

trx~C~WŴCW
~

trx~C~

hKBCx~x~LCAPPLCAx~V

FF

TT

TTTT

∗∗

∗∗

∗∗

∗

+








 ++−

−−−

−+−−+−−=

ψψα

ψαψψα

ψαψ

ωε

1

2
0

2

21

020

2

2

22

&

                         (31) 
By using Fact 2, the representation 

2222 ∗−+= ψψψψψ ˆ~ˆ~ , and (6), the Lyapunov de-

rivative can be written as 
 

( )
( ) ( )

( )
x~C~lx~C~WŴ

x~Cˆ~lWWtrx~C~

WWCWŴCW
~

Cx~C~

hKBCx~x~Qx~V

F

T

FFF

TT

∗∗∗

∗∗∗∗

∗∗

∗

+−+







 −+−+






 −−−+−

−+−−=

ψψαψα

ψψψαψα

ψ

ωε

1

2

02

222
102

2

0

2

0

2

2

2

&

              (32) 
Furthermore, by using Remark 4, condition (27), 

Lemma 5.1, and notation (29), the Lyapunov deriva-
tive (32) can upper bounded as 

 



+−+





 −+−








 −−−+−


 +−⋅≤

∗∗

∗

∗

ψψαψαψψψα

ψ

αα

~l~WŴˆ~l

WWcWŴcW
~

c~

KBx~x~CV

F

F
maxiFminiFmini

F

1

2

02
222

1

2

0

2

0

2

43

2

&

                               (33) 
Further using (26) and rearranging terms, we ob-

tain 





+





 −−

−++



 −−−⋅≤

∗∗

∗

∗

ψψαψψα

ψα

ψαψα

~lˆl

WW~cKB

~lW
~~cx~x~CV

F
maxiF

Fmini

1
22

1

2

04

2
1

2

3

2

&

    (34) 

 

By employ the definition of ∗ψ , see (25), recall-

ing that ∗−= ψψψ ˆ~ , and using Lemma 5.1, (34) re-

duces to 
 


++−

−−






 −++



 −−−⋅≤

∗∗

∗∗∗

∗

ψψαψαψα

ψψα

ψαψα

~llˆl

WWcˆWWcl

~lW
~~cx~x~CV

F
maxi

F
maxi

Fmini

1
2

1
2

1

2

0

2

001

2
1

2

3

2

2

&

                                    (35) 
which, by using (17), implies 
 




+
+

−

−−






 −++



 −−⋅≤

∗
∗

∗∗∗

∗

ψψαψ
ψψ

α

ψψα

ψα

ˆlˆ
ˆ

l

WWcˆWWcl

W
~~cx~x~CV

F
maxi

F
maxi

Fmini

2
01

201

2

0

2

001

2

3

4
2

2

&

                                    (36) 
Thus by using Lemma 5.1 and rearranging terms 

in (36), we finally obtain 
 

( )



















 −+−
+

−
















 −+−
+

−














−−−





−−⋅≤

∗∗
∗

∗
∗

∗∗

∗

ψαψ
ψψ
ψα

α
ψψ

ψα

α
αψ

ψα

1

2

000
1

1

2

000

2
1

2
02

2
01

2

0

2

3

2

2

4

F
maxi

F
maxi

F
F

maxi

Fmini

WWclˆl
ˆ

ˆ

WWcll
ˆ

ˆ

W

l
WWc

W
~~cx~x~CV&

                                     (37) 
It addition, we note from (28) that 
 

( )
2

02

2
01

2

0
4

Fmaxi
F Wc

l
WW

α
α≥−∗ , 

1

2

0
0

2
α

F
maxi WWc

l −≥ ∗  

(38) 

 
By substituting (38) into (37), and using Lemma 

5.1, we arrive at 
 

( ) 2
x~QV minλ−≤&                           (39) 

Hence, the error signals ψ~,W
~

,x~  are uniformly 

bounded. Further, since V is bounded from below and 
non increasing with time, we have 

 

( ) ( )
( ) ∞<−≤ ∞

∞→ ∫ Q

VV
dx~lim

min

t

t λ
ττ 0

0

2
          (40) 

 
where ( ) ∞<= ∞∞→ VtVlimt . Notice that with the 

bounds on εψ ,~,W
~

,x~  and h, 
2

x~  is uniformly con-

tinuous. Thus from (12), it follows that x~&  is 
bounded. Hence by Barbalat´s lemma [13], we con-
clude that ( ) 0=→∞ tx~limt . □   

Remark 5: It should be highlighted that x~C∗  in (16) 

and (23) can be computed via y~ . Since ∗C  lies in 

the span of the rows of C, there exists a matriz T such 

that  TCC =∗ . In [2] it is shown a way to determine 
T: consider the singular value decomposition of C ,  
 

TVUC ∑=  (41) 

and the pseudo inverse +C , 
TUVC ++ ∑=   42) 

 

where qqU ×ℜ∈  e nnV ×ℜ∈  are orthogonal matri-

ces,   
( )

( ) ( ) ( )








=∑

−×−×−

−×

knkqkkq

knkD

00

0
, 

( )k..,,,i,diagD i 21== σ , 0>iσ  are the singular 

values of C, k is the rank of C, and 

( )
( ) ( ) ( )











=∑

−×−×−

−×
−

+

kqknkkn

kqkD

00

01

. Then, +∗= CCT , 

since it satisfies the equation TCC =∗ . In summary, 

y~Tx~TCx~C ==∗ . 

 
Remark 6: Conditions (6), (18), (24), and (26) are 
trivial since them are defined by the user according to 
a desired performance. Condition (25) implies the 
previous knowledge of upper bounds for the ap-
proximation error and disturbances, which is ensured 
by Assumption 1 and 3. Conditions (27) and (28) 

require at least that the sign of some entry of  ∗W  
and bounds for the ideal weights are known. The pre-
vious knowledge of bounds for the modeling error 
and ideal weights is not peculiar to the proposed 
scheme. Most robust modifications in the literature, 
as for example, switching-σ , parameter projection, 
and dead-zone require a priori information on the 
plant or modeling error for ensuring stability, as re-
ported in [13].  
 
Remark 7: It should be noted that condition (28) can 
be rewritten as  
 



0
1

02
0

2

0
1 4

2
WW

Wc
lWW

c maximaxi −≤≤− ∗∗

α
α

α
 (43) 

 
 Hence, there is at least one way of selecting the de-
sign parameters to satisfy this interval condition: by 
selecting the design constant 2α  to be large enough 

and, in the sequence, by adjusting 
F

WW 0−∗  to be 

small enough, what can be achieved by appropriate 
selection of the matrix 0W . 

6   Conclusions 

In this paper an adaptive observer that ensures ob-
server error convergence to zero, even in the pres-
ence of approximation error and disturbances, was 
proposed. The main peculiarities of the proposed 
scheme are that it does not assume the existence of a 
solution for a Riccati equation, as usual in the litera-
ture, and it does not suffer from chattering phenom-
ena. The use of the proposed methodology for im-
plementing an asymptotic tracking control system is 
under investigation. 
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